1,484 research outputs found

    Structure of W3(OH) from Very High Spectral Resolution Observations of 5 Centimeter OH Masers

    Full text link
    Recent studies of methanol and ground-state OH masers at very high spectral resolution have shed new light on small-scale maser processes. The nearby source W3(OH), which contains numerous bright masers in several different transitions, provides an excellent laboratory for high spectral resolution techniques. We present a model of W3(OH) based on EVN observations of the rotationally-excited 6030 and 6035 MHz OH masers taken at 0.024 km/s spectral resolution. The 6.0 GHz masers are becoming brighter with time and show evidence for tangential proper motions. We confirm the existence of a region of magnetic field oriented toward the observer to the southeast and find another such region to the northeast in W3(OH), near the champagne flow. The 6.0 GHz masers trace the inner edge of a counterclockwise rotating torus feature. Masers at 6030 MHz are usually a factor of a few weaker than at 6035 MHz but trace the same material. Velocity gradients of nearby Zeeman components are much more closely correlated than in the ground state, likely due to the smaller spatial separation between Zeeman components. Hydroxyl maser peaks at very long baseline interferometric resolution appear to have structure on scales both smaller than that resolvable as well as on larger scales.Comment: 21 pages using emulateapj.cls including 16 figures and 2 tables, accepted to Ap

    Effelsberg Observations of Excited-State (6.0 GHz) OH in Supernova Remnants and W3(OH)

    Full text link
    While masers in the 1720 MHz transition of OH are detected toward many supernova remnants (SNRs), no other OH transition is seen as a maser in SNRs. We present a search for masers at 6049 MHz, which has recently been predicted to produce masers by pure collisional excitation at conditions similar to that required for 1720 MHz masing. The Effelsberg 100 m telescope was used to observe the excited-state 6016, 6030, 6035, and 6049 MHz lines of OH toward selected SNRs, most of which have previously-detected bright 1720 MHz masers. No excited-state masers are found toward SNRs, consistent with previous observations of the 6049 MHz and other excited-state transitions. We do not see clear evidence of absorption toward SNR target positions, although we do see evidence of absorption in the molecular cloud at +50 km/s near Sgr A East. Weak absorption is detected at 6016 MHz toward W3(OH), while stronger, narrower emission is seen at 6049 MHz, suggesting that the 6049 MHz emission is a low-gain maser. We conclude that conditions in SNRs are not conducive to excited-state maser emission, especially in excited-state satellite lines.Comment: 4 pages using emulateapj.cls including 2 tables and 1 figure, accepted to ApJ

    VLBI Astrometry of the Stellar Image of U Herculis, Amplified by the 1667 OH Maser

    Get PDF
    The OH 1667 MHz maser in the circumstellar shell around the Mira variable U Herculis has been observed with the NRAO Very Long Baseline Array (VLBA) at 6 epochs, spread over 4 years. Using phase referencing techniques the position of the most blue-shifted maser spot was monitored with respect to two extra-galactic radio sources. The absolute radio positions of the maser can be compared with the stellar optical position measured by the Hipparcos satellite to 15 mas accuracy. This confirms the model in which one of the maser spots corresponds to the stellar continuum, amplified by the maser. The stellar proper motion and the annual parallax (5.3 +/- 2.1 mas) were measured.Comment: 6 pages, 4 figures; to be published in A&

    Antifreeze in the hot core of Orion - First detection of ethylene glycol in Orion-KL

    Full text link
    Comparison of their chemical compositions shows, to first order, a good agreement between the cometary and interstellar abundances. However, a complex O-bearing organic molecule, ethylene glycol (CH2_{2}OH)2_{2}, seems to depart from this correlation because it was not easily detected in the interstellar medium although it proved to be rather abundant with respect to other O-bearing species in comet Hale-Bopp. Ethylene glycol thus appears, together with the related molecules glycolaldehyde CH2_{2}OHCHO and ethanol CH3_{3}CH2_{2}OH, as a key species in the comparison of interstellar and cometary ices as well as in any discussion on the formation of cometary matter. We focus here on the analysis of ethylene glycol in the nearest and best studied hot core-like region, Orion-KL. We use ALMA interferometric data because high spatial resolution observations allow us to reduce the line confusion problem with respect to single-dish observations since different molecules are expected to exhibit different spatial distributions. Furthermore, a large spectral bandwidth is needed because many individual transitions are required to securely detect large organic molecules. Confusion and continuum subtraction are major issues and have been handled with care. We have detected the aGg' conformer of ethylene glycol in Orion-KL. The emission is compact and peaks towards the Hot Core close to the main continuum peak, about 2" to the south-west; this distribution is notably different from other O-bearing species. Assuming optically thin lines and local thermodynamic equilibrium, we derive a rotational temperature of 145 K and a column density of 4.6 1015^{15} cm2^{-2}. The limit on the column density of the gGg' conformer is five times lower.Comment: 19 pages, 10 figures, A&A accepte

    A Review of Maser Polarization and Magnetic Fields

    Full text link
    Through polarization observations masers are unique probes of the magnetic field in a variety of different astronomical objects, with the different maser species tracing different physical conditions. In recent years maser polarization observations have provided insights in the magnetic field strength and morphology in, among others, the envelopes around evolved stars, Planetary Nebulae (PNe), massive star forming regions and supernova remnants. More recently, maser observations have even been used to determine the magnetic field in megamaser galaxies. This review will present an overview of maser polarization observations and magnetic field determinations of the last several years and discuss the implications of the magnetic field measurements for several important fields of study, such as aspherical PNe creation and massive star formation.Comment: 10 pages, Review paper from IAU symposium 242 "Astrophysical Masers and their Environments

    Oscillatory activity in the infant brain reflects object maintenance

    Get PDF
    The apparent failure of infants to understand "object permanence" by reaching for hidden objects is perhaps the most striking and debated phenomenon in cognitive development. Of particular interest is the extent to which infants perceive and remember objects in a similar way to that of adults. Here we report two findings that clarify infant object processing. The first is that 6-mo-old infants are sensitive to visual cues to occlusion, particularly gradual deletion. The second finding is that oscillatory electroencephalogram activity recorded over right temporal channels is involved in object maintenance. This effect occurs only after disappearance in a manner consistent with occlusion and the object's continued existence

    ALMA observations of TiO2_2 around VY Canis Majoris

    Full text link
    Titanium dioxide, TiO2_2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO2_2 has been detected only in the complex environment of the red supergiant VY CMa. We aim to constrain the distribution and excitation of TiO2_2 around VY CMa in order to clarify its role in dust formation. We analyse spectra and channel maps for TiO2_2 extracted from ALMA science verification data. We detect 15 transitions of TiO2_2, and spatially resolve the emission for the first time. The maps demonstrate a highly clumpy, anisotropic outflow in which the TiO2_2 emission likely traces gas exposed to the stellar radiation field. A roughly east-west oriented, accelerating bipolar-like structure is found, of which the blue component runs into and breaks up around a solid continuum component. A distinct tail to the south-west is seen for some transitions, consistent with features seen in the optical and near-infrared. We find that a significant fraction of TiO2_2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa.Comment: Accepted for publication in Astronomy & Astrophysics, 25 pages, 20 figure

    Expansion of W 3(OH)

    Full text link
    A direct measurement of the expansion of W 3(OH) is made by comparing Very Large Array images taken about 10 yr apart. The expansion is anisotropic with a typical speed of 3 to 5 km/s, indicating a dynamical age of only 2300 yr. These observations are inconsistent with either the freely expanding shell model or a simple bow shock model. The most favored model is a slowly expanding shell-like HII region, with either a fast rarefied flow or another less massive diffuse ionized region moving towards the observer. There is also a rapidly evolving source near the projected center of emission, perhaps related to the central star.Comment: LaTeX file, 28 pages, includes 8 figures. To appear in ApJ in December 10 (1998) issue. Also available at http://www.submm.caltech.edu/~kawamura/w3oh_pp.p
    corecore